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Both classical' and quantum mechanical theories of electron transfer (ET)

lead to the now familiar - but nevertheless remarkable - prediction that ET rates

should ultimately decrease with increasing thermodynamic driving force (-AG 0 ).

While these predictions of "invprted" rate behavior remained controversial and

largely unsupported for a number of years,' more recent studies have convincingly

demonstrated their veracity for a range of organic,' inorganic/organometallic,5 and

biological' redox procestes in both liquid and frozen homogeneous solution

environments. To the best of our knowledge, however, the phenomenon has never

been demonstrated for interfacial or electrochemical processes; indeed there are

solid theoretical reasons to suspect that interfacial rate inversion would, in many

cases, be impossible."8 Nevertheless, we now report the first experimental

demonstration of fast, inverted, interfacial ET rate behavior and show that it is

broadly consistent with the predictions of the most sophisticated contemporary

theories.2'3

The prototypical reaction examined was ET from colloidal Ti0 2 (a large

bandgap semiconductor) to ferricyanide.9"' The reaction was initiated

photochemically by pumping the tail of a direct (i.e. not dye sensitized) molecule-

to-surface charge-transfer transition (eq.1; • 430nm)"°" with the amplified

and doubled output of an Nd:YAG laser (532nm, 2.5ns pulses, 3 to 8OmJ/pulse).

Kinetics were monitored by following (at 488nm) the recovery of the charge-

transfer absorbance.

Fe(CN) 6  Fe(CN) 6 4

Fe(CN)6 ' Ti_ 2 hy Fe(CN)6 
3 . e T (1)

Fe(CN) 6 Fe(CN)6  T

Fe(CN)64' Fe(CN),6



For reaction 1, the recovery kinetics are characterized by a short (z = 270ns)

exponential decay and a much longer (ps -4 ms) nonexponerntial decay."2 While

both processes are evidently ET related we will further concern ourselves only

with the better defined, shorter decay. This decay is responsible for roughly half

of the total absorbance change.

Interpretation of the short decay in terms of interfacial ET kinetics yields

kET = 3.7 ± 0.4 x 106s'."3 Variations in pump power (25-fold) confirm that the

decay is truly first order, i.e. effectively a geminate interfacial charge-transfer

process. Temperature variations over an admittedly narrow range (25°) show no

detectablc change in lifetime, implying an activationless ET process. This result is

fully consistent with our prior observation, by time-dependent Raman scattering

methods, that the Franck-Condon barrier to ET is dominated by very high

frequency (ca. 2000 cm-') cyanide stretching modes."

Variations in driving force were introduced by replacing one CN" ligand with

any of several substituted pyridines." Absolute driving forces have yet to be

determined;" however, relative AG°'s can be inferred from Fe(CN).5L'" potentials

(Table I). Figure 1 clearly shows that log kET df-creases as the relative driving

force increases. Control experiments show: 1) no change in kET with added

(excess) pyridyl ligand, and 2) no absorbance transient from either the Ti0 2 colloid

or the complexes separately.

Expressed as an effective electrochemical transfer coefficient (or Br6nsted

slope)"6 the log kE,/E plot in fig. 1 yields a = -0.2. This result is quantitatively

consistent with the predictions of a multimode quantum rate theory described by



Jortner and co-workers,2•'b provided that: 1) ET is regarded as highly exothermic,'5

2) displacements in high-frequency intraligand modes and, to - lesser extent,

intermediate frequency metal-ligand and semiconductor lattice modes provide the

necessary Franck-Condon overlaps," 3) the displacements are more-or-less the

same for each member of the redox series, and 4) all electrons are supplied at a

-< single energy at or near the conduction band edge,"7 rather than over a range of

energies corresponding to multiple mid-bandgap surface states.

We note that assumption 2 has already been experimentally validated" and

that assumption 3 is at least qualitatively supported by existing studies of the

Fe(CN)8 L"" series in homogeneous (bimolecular) redox processes. 20  If tibe

absolute energetics of electron transfer (item 1) can be assessed, then more

detailed confrontations with theory should be possible. Finally, we also hope to

assess the effects of semiconductor electrode potential'lb,1S (by replacing colloidal

TiO2 with a single, high-area surface'9 ). This should enable us to test assumption

4 and perhaps also gain significant physical insight into the longer timescale

absorbance decay phenomenon.
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Table I. Solution Phase Formal Potentials and Interfacial Electron Transfer

Reaction Times for Fel"(CN)L"" Species.

L E(.mV vs. SCE)" t(ns)b

CN 118.10 270±30

3,5-dimethylpyridine 160±20 280±30

4-methylpyridine 183±10 340±40

pyridine 215±10 430±40

3-chloropyridine 268±10 680±+60

pyrazine-ferrocyanidec 393± 10 1500±100

a. Measured in IM NaCl. b. Obtained at ca. pH 2.5. c. The reactant was

(NC)5Fe"'-pyrazine-Fe"(CN),'*.



Fieure Captior

Log kET at colloidal TiO2 versus reduction potentials (solution phase) for

Fe"•(CN)5 L" species.
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